Syllabus Europhotonics AMU 2022

Table des matières

Semestre 1	1
Curriculum	1
Modules description - AMU	1
Fundamentals in Optics	2
Physics for Photonics I	5
Light Emission and Lasers	6
Imaging and Instrumentation in Optics	$\overline{7}$
Labs practice	8
Personal Project	9
Language	10
Semestre 2	11
Curriculum	11
Modules description - AMU	11
Guided Optics	12
Nonlinear Optics	14
Physics for Photonics II	16
Optoelectronic Devices	17
Photon Spectroscopy	18
Molecular Cell Biology	19
Advanced Elm I - Numerical	20
Labs	21
Signal and Images Analysis	22
Language	24
	~ -
	25
Curriculum	25
Modules description - AMU	25
Tutorials	26
Quantum Optics	28
Laser and Applications	29
Components	31
Photonics for Biomedical Applications	33
Advanced Methods for Optical Instrumentation	34
Advanced Electromagnetism II	35
Nanophotonics	37
Astronomical Instrumentation	39
Apprenticeship	40
Language	41

Semestre 1 Curriculum

Η	S1 - AMU	ECTS
80	Fundamentals in Optics & Tutorials	6
60	Physics for Photonics I	6
40	Light Emission & Laser sources	3
30	Imaging and Systems in Optics	3
50	Labs practice	3
40	Personal projects	6
24	FLE ou English	3
324	Total	30

Modules description - AMU

UE01 Fundamentals in Optics & Tutorials Semestre : M1 – S1			
		Code : SPHAU58J	ECTS : 6
Total Workload	CM : 40 h / TD : 40 h	Homework & self-studies : 60 h	

Module	Introduction Tutorials	Code : SPHAU58J	ECTS : 0
Person in charge	P. Ferrand		
Lecturer (s)	P. Ferrand		
Workload	TD : 20 h	Homework & self-stu	ıdies : variable
Objectives	The purpose of this series of tutorials is to rem	nind the common back	ground knowledge
	that is required in all the lectures of the Master	•	
Content and	A quick reminder about		
organisation	• Basic mathematical tools: complex numbers,	derivatives, integrals, v	vector algebra,
	Fourier transforms,		
	Ray optics and wave optics: interferences, diffraction, polarization, introduction to		
	coherence		
Acquired	 Performing basic and advanced mathematical derivations, 		
competencies	 Understanding the purpose of Fourier analysi 		ne transformation
	in one domain (shift, derivative, etc.) to the rec		
	 Drawing optical rays for an optical system, an 		-
	 Knowing how to analyze a state of polarizatio 		
	 Writing formally the conditions for interferences (Young slits, Michelson 		
	interferometer).		
Performance	Indirect as the competencies are needed for the final examination of parts below		
Appraisal			
Prerequisites	Bachelor knowledge in physics, electrodynamicss		
	Fundamentals in Mathematics		
Literature			

Module	Fundamen	tals of Optics -	- Part I	Code : SPHAU58J	ECTS : 3
Person in charge	A. Nicolet				
Lecturer (s)	A. Nicolet, G. Soriano (tutorials)				
Workload	CM:20h/	′ TD : 10 h		Homework & self-stu	<i>idies : 30</i> h
Objectives	The student	ts from different	backgrounds refre	esh and elaborate their	knowledge of basic
	electrodyna	mics and wave	propagation.		
	The course	is also the oppo	ortunity to refresh	the necessary math ski	lls (vector analysis,
	Fourier trai	nsform, distribu	tion theory) for	the understanding the	physical concepts
	presented i	n the course.			
	The course	is pretty self-cor	ntained since it sta	rts with electrostatics.	
Content and	Ι.	Electrostatics	and distribution th	eory.	
organisation	П.	Magnetostatic	s (and some specia	al relativity).	
	III.			well's equations (Farad	
		-	ère theorem). Und	erstanding the equation	is : a vector analysis
	D /	synthesis.	A	- in model to take and from	
	IV.		ctromagnetic ener	is in media. Integral for gy.	m of the Maxwell's
	V.	Wave equation	ons, EM plane v	vaves, Snell-Descartes	law and Fresnel
		coefficients.			
	VI.	Fourier transfo	orms of functions a	nd distributions.	
	VII.	Maxwell's equ	ations in the frequ	ency domain, dispersive	e materials and the
		Kramers-Kroni	g relations.		
	VIII.			tions, and the integral i	ntegral theorem of
		Helmholtz-Kiro			
	IX.	Electromagnet	tic radiation.		

	Note : the mathematical tools are introduced in the chapters were they are relevant for electrodynamics.
Acquired competencies	 Understand the basic principles of electromagnetism and how they are interconnected. Know how to perform computations using vector analysis, Fourier transformation, and distribution theory to set up and solve simple electromagnetic problems. Understand that magnetism is a relativistic effect and that the observations do not depend on the inertial frame (velocity is relative) while the radiation is due to charge acceleration. Understand the difference between general laws (macroscopic Maxwell's equations) and constitutive laws specific to materials. Understand the concepts of electromagnetic energy, power density, and forces. Understand how the electromagnetic waves are radiated and propagates, and the optics is the study of electromagnetic waves propagation with some simplifying assumptions. Be able to perform dimensional analysis to get physical information with a minimum of work.
Performance Appraisal	Final examination Type of Examination: written exam
Prerequisites	Solid mathematical background, basic knowledge in physics and electrodynamics
Literature	D. J. Griffiths: Introduction to Electrodynamics G. van Dijk: Distribution theory, Convolution, Fourier transform, and Laplace transform J. I. Richards, H. K. Youn: The theory of distributions - A nontechnical introduction V. S. Vladimirov: Generalized Functions in Mathematical Physics

Module	Fundamentals of Optics – Part II Code : SPHAU58J ECTS : 3		
Person in charge	F. Zolla		
Lecturer (s)	F. Zolla, G. Soriano (tutorials)		
Workload	CM : 20 h / TD : 10 h Homework & self-studies : 30 h		
Objectives	With the help of Part I, on the introduction to electrodynamics, this course is supposed		
	to be as self-consistent as possible. It allows to make the link between two parts which		
	are separated in the undergraduate courses: Optics on the one hand and		
	Electromagnetism on the other hand. We address notions as essential as polarization,		
	wave packets, lenses, always putting forward the wave aspect.		
Content and	1. Introduction to electromagnetism		
organisation	1.1. General introduction and preliminary remarks		
	1.2. From constitutive relations to dispersion equation		
	1.2.1. Generalities		
	1.2.2. A bit more about permittivity		
	1.2.3. Dispersion equation		
	1.3. Polarization of electromagnetic waves 1.3.1. General considerations		
	1.3.1. General considerations 1.3.2. Some useful properties		
	1.3.3. Linear and circular polarization		
	1.3.3.1. Linear polarization		
	1.3.3.2. Circular polarization		
	1.4. Notions of spatial wave packets		
	1.4.1. Towards a 2D–problem		
	1.4.2. Packets of cylindrical waves		
	1.4.3. Packets of plane waves		
	2. Stratified media		
	2.1. Introduction		
	2.2. Decoupling in TE and TM waves of an arbitrary polarized incident plane wave		
	2.3. Reflection and transmission of a plane wave at a plane interface		
	2.3.1. TE case		
	2.3.2. TM case		

	2.4. Energetic considerations – Coefficients of reflection and transmission in
	energy
	2.5. Reflection and transmission of a plane wave by a slab
	2.5.1. Complex coefficients of reflection and transmission
	2.5.2. A first approach of lenses
	2.5.3. Introduction
	2.5.4. Transfer function for a plano-convex lens
	2.5.5. Transfer function for other thin lenses
	3. From Fresnel to Fraunhofer
	3.1. Introduction
	3.2. Fresnel transform
	3.2.1. Packets of plane waves : a second approach
	3.2.2. Fresnel approximation
	3.3. Properties of the Fresnel transform
	3.3.1. The Fresnel transform is an operator of convolution
	3.3.2. Fresnel vs Fourier
	3.4. A first approach of Fraunhofer optics : Fresnel at "infinite" distance
	3.5. A second approach of Fraunhofer optics : Fresnel Optics in using a convergent
	thin lens
Acquired	 The students understand the origin of dispersion and leakage
competencies	The students have a clear idea on polarization
	They can derive the Fresnel's coefficients and understand their consequences
	They have a clear idea about thin lenses
	They have some notions on wavepackets
	• They know the frame of Fresnel's and Fraunhofer's Optics and their numerous
	consequences on the study of images.
Performance	Final examination
Appraisal	Type of Examination: written exam
Prerequisites	Solid mathematical background, basic knowledge in Physics, Electrodynamics and Optics
Literature	1. <u>Gbur, 2011, Mathematical Methods for Optical Physics and Engi-</u>
	neering. As mentioned in the title, this textbook tackles the realm of Optics
	with a rather mathematical flavour. Available at the library on request.
	2. Novotny and Hecht, n.d., Principles of Nano-Optics. All fashionable topics
	Available at the library on request.
	3. <u>Hecht, 2002, Optics.</u> Well suited for beginners. Available at the library on request.
	4. Goodman, n.d., Introduction To Fourier Optics. For students interested
	in classical optics and especially Fresnel and Fourier optics. Outstanding
	monography but for complementary readings.
	5. <u>Marcuse, n.d., Light Transmission Optics.</u> For the students interested in
	classical optics, waveguides, lenses, etc Complementary readings (About 400
	pages). Available at the library on request.
	6. <u>Sharf, n.d., From Electrostatics To Optics</u> : A Concise Electrodynamics Course. For
	master students : Chapters I to IV. Available at my office on request.
	7. Jackson, n.d., Classical Electrodynamics. For master students : Chapters
	VI, VII and IX partly (Too) comprehensive book in Optics (about 800 pages !).
	Available at my office on request.
	8. <u>Born and Wolf, 2002, Principle of Optics</u> . For master students : Chapters
	I and II. (Too) comprehensive book in Optics (about 1000 pages !).
	9. <u>Saleh and Teich, 2007, Fundamentals of Photonics</u> . Very comprehensive
	book (About 1200 pages!!) suited for master students. This monograph tackles
	the main topics in Photonics in a very pedagogical fashion with its abundant and
	well-illustrated coloured figures with a minimum of mathematical background.
	(See amongst other Ch. I to VI) Available at library on request.
	נשבר מוווטוואשנ טנוובו כוו. דנט און אימוומטוב מג ווטו מוץ טון ופעעפטנ.

UE06 Physics fo	or photonics - part 1	Semestre : M1 – S1	
Module		Code : SPHAU63	ECTS : 6
Person in charge	Marie Houssin		
Lecturer (s)	Marie Houssin, Michael Kuzmin, Voicu Dolocan		
Workload	CM : 40 h / TD :20 h	Homework & self-stu	ıdies :
Objectives	Photonics is based on the interaction between light and matter. A knowledge of the atom structure and matter physics is needed to understand different types of interactic processes.		
	The main objective of this course is to give s		on atomic physics,
	statistical physics and condensed matter physi	CS.	
Content and	Atomic Physics		
organisation	1. Atom.	- · · · · · · · · · · · · · · · · · · ·	
	2. Basics of quantum mechanics. Light quanta	. Emission and Absorp	tion. Duality wave-
	particle. Uncertainty relation. 3. The atom picture of Bohr, Rutherford and So	mmorfold (and its limit	
	4. The hydrogen atom. Fine and hyperfine stru	-	.5).
	5. Atoms in external fields.		
	6. Interactions of atoms with light. Spectroscop	ov and High-resolution	spectroscopy
	7. Laser cooling. Traps. Atomic clocks.	,	
	Statistical physics		
	1. Quantum states. Closed system. Equal proba	abilities. Microcanonica	l ensemble.
	2. Systems in thermal contact. Temperature ar	id entropy. Canonical e	nsemble.
	3. Systems in diffusion contact. Chemical poter		nsemble.
	4. Fermi-Dirac's distribution. Fermions. Metals		
	5. Bose-Einstein's distribution. Bosons. Bose-co	ondensation. Photons, I	Planck's
	distribution.		
	6. Boltzmann's distribution. Ideal classical gaz.		
	Introduction to condensed matter physics		
	Introduction to the properties of solids. Crys	stal structures and bo	nding in materials.
	Beyond the crystalline state: soft matter (polyr		_
Acquired	The students		
competencies	 can describe atomic models 		
	 are familiar with basic microscopic models of 	-	n
	 know order of magnitude of quantum process 		
	• understand the role of environmental condit		
	• should be familiar with the basic concepts of		ohysics
	have knowledge of the Bose-Einstein and Fer understand the different matter states and the		
	• understand the different matter states and t	neirs particularities	
Performance	Final examination		
Appraisal	Type of Examination: written exam		
Prerequisites	Solid mathematical background		
	basic knowledge in physics		
Literature	W. Demtröder, Atoms, Molecules and Photons	Springer Heidelberg (2006).
	C.J. Foot, <i>Atomic Physics</i> , Oxford (2005)		
	M.Marder, Condensed Matter Physics		

UE02 - Light emi	ission and Lasers	Semestre : M1 – S1		
Module	Light emission and Lasers	Code : SPHAU59 ECTS : 3		
Person in charge	Nicolas Sanner			
Lecturer (s)	Nicolas Sanner and Kamal Belkebir			
Workload	CM:30h / TD:10h / TP:0h	Homework & self-stu	<i>idies : 50</i> h	
Objectives	This course is an introductory lecture about light and lasers, providing comprehensive description of the physics underlying the operation of lasers. The first part, "Light emission" (10h), introduces the three main processes responsible for light emission (thermal, spontaneous, stimulated). In the second part, "Laser sources" (30h), a comprehensive treatment is provided for the fundamental concepts of lasers physics and the basic operation principles. Detailed example and tutorials are included.			
Content and organisation	 Part 1 – Light emission (10h) In this part, we focus on several processes repractical examples. 1. Thermal emission. 2. Luminescence and spontaneous emission. 3. Stimulated emission Part 2 – Laser sources (30h) 1. Introduction 2. Photon-atom interaction 3. Light amplification 4. The laser oscillator 5. Laser cavities and laser beams 6. Pulsed regimes 	esponsible for light er	nission with some	
Acquired competencies	At the end of this module, the student will poss principles and operation of laser sources as well They will be able to: - Study population inversion for various - Determine the amplification gain and t - Assess the threshold for laser oscillatio - Design stable cavities - Understand and calculate spatial and s	l as resulting character spectroscopic systems he saturation of a lase n	ristics of laser light. ; r medium	
Performance	Final examination			
Appraisal	Type of Examination: written exam (without do	cuments)		
Prerequisites	Basic physics background			
Literature	"Laser fundamentals", W. Silfvast, Cambridge U "Lasers", A.E. Siegman, Science Books	niversity Press		

UE03 - Imaging	and Instrumentation in optics	Semestre : M1 – S1		
Module	Imaging and Instrumentation in optics	Code : SPHAU60	ECTS : 3	
Person in charge	Guillaume Maire			
Lecturer (s)				
Workload	CM:20h / TD:10h / TP:0h			
Objectives		sh and elaborate their	knowledge of the	
0.0,000,000	The students from different backgrounds refresh and elaborate their knowledge of the principles of optical imaging. The course starts with a reminder of the Huygens-Fresnel			
	principle and of the Fresnel and Fraunhofer the			
	and rigorous approach, based on the resolution of Maxwell's equations, is adopted. The			
	principles of image formation are studied using this approach. In particular, the link			
	between the object defined by its permittivity distribution and the data collected for a			
	given illumination (coherent or non coherent) is studied. The role of otical lenses, mirrors			
	and the limitations of the performances of opti	ical imaging systems (t	elescopes, far-field	
	microscopes, near-field microscopes) in terms of	of resolution, accuracy	are discussed.	
	Applications in astronomy, biology, nanotech	nology and solutions	implemented for	
	increasing the performances are studied.			
	Recent advances in optical imaging are present	ed throughout this cou	rse.	
Content and	I – Introduction			
organisation	I.1 – Image-vision			
	I.2 – Brief description of the main	imaging systems		
	II – Interaction between electromagnetic waves	s and heterogeneous ol	bjects	
	II.1 – Maxwell's equations			
	II.2 – Calculation of the scattered field			
	II.3 – Total field inside the object			
	II.4 – Numerical calculation	. .		
	II.5 – Fourier transform of the Gre	en function		
		II.6 – Green function in far-field		
		III – Optical imaging		
	III.1 – Accessible data			
	III.2 – Optical microscopes III.3 – Telescopes			
Acquirad	The students			
Acquired competencies	•can determine the link between the object (c	locaribod by its porma	ttivity distribution)	
competencies			tivity distribution)	
	 and the diffracted field using an electomagneic approach know what are the main approximated theories of diffraction with their limitations and 			
	domains of validity			
	•understand the difference between near field	imaging and far field ir	naging	
	•understand the difference between coherent			
	•know what are the characteristics of the mai		-	
	microscopes in near field, far field, fluorescence	e microscopes)		
	•know what are the origins of the limitations of		s of resolution and	
	accuracy			
	•are familiar with the main applications of optical imaging			
	•know the solutions implemented in order to c	overcome the main limit	itations of classical	
	imaging systems in optics			
	 know the principles of digital imaging 			
	 have a good vision of recent advances in optic 	al imaging		
Performance	Final examination			
Appraisal	Type of Examination: written exam			
Prerequisites	Geometrical optics, optical interferences, optical	al coherence, diffractio	n,	
	electromagnetism			
Literature	For the prerequisites: E. Hecht: Optics			

UE04 – Lab Prac	tice	Semestre : M1 – S1	
Module	Lab Practice	Code : SPHAU61	ECTS : 3
Person in charge	Julien Duboisset		
Lecturer (s)	J Duboisset, A Escarguel, M Houssin, B Stout, P Ferrand, G Soriano		
Workload	CM:0h / TD:0h / TP:40h	Homework & self-stu	<i>idies :</i> 20-60 h
Objectives	The students from different backgrounds ref	resh and elaborate their l	knowledge of basic
-	fields of optics and some other useful nei		-
	diffraction, spectroscopy, metrology and elec	tronics, data analysis by	computer.
	The objective to the Lab practice is to given them skills, reflexes, automatisms in		
	manipulating experimental optical data		
Content and	List of experiments: (4h each)		
organisation	1. Geometrical optics 2.	Coherence	
	3. Fourier optics 4.	Polarization	
	5. Monochromator 6.	Michelson interferomet	er 1
	7. Michelson interferometer 2 8.	Spectroscopy	
	9. Photodetectors 10.	Holography	
	We apply a working methodology which is		
	industrial R&D. First all experiments are carri		
	Quantitative measurments are performed		omments on the
	methodology as well as on the measurement		c i
	Experimental work is done in teams of 2 stuc		
	experiment, so everybody does a different ex	periment and the group	rotates for the
Acquired	next session. The students		
=			
competencies	• can align the different setups		
	 can carry out a measurement and evaluate its statistical uncertainties can write a scientific report 		
	 can communicate precisely on complex experimental setups 		
	 understand how interferometers work and 	-	or
	 understand how spectrometers work and v 	-	
	 understand basic optical instruments and t 	-	
	 realized a precise alignment of the Michels 		
	 realized holograms and used them in applic 		
	• know the different electronic circuits used		diodes
	• know how to caracterize the polarization o		
Performance	An oral exam allows to check comprehension of the different experiments. The student		
Appraisal	must present a quantitative measurment on	•	
	students have some time of preparation before the presentation.		
	The Lab book is evaluated in the same time		
Prerequisites			
	Basic knowledge in physics / optics / electror	lics / programming	
Literature	Basic knowledge in physics / optics / electror "Laser fundamentals", W. Silfvast, Cambridge		

UE05 – Personal Project		Semestre : M1 – S1	
Module	Personal project	Code : SPHAU62	ECTS : 6
Person in charge	F Wagner, A Litman		
Lecturer (s)	Frequently changing		
Workload	CM:0h / TD:0h / TP:40h	Homework & self-stu	<i>dies : 60</i> h
Objectives	This lab work aims to make a first contact of the students with research work. Independent work on a specific topic is expected. Reading the litterature. Discussing with the supervisor to clear remaining questions. Start learning usage of an experimental setup or a computer code. Do some measurements or simulations and analyze them. Doing everything in a logical systematic way. Finally, present the topic and your work on it in an oral presentation, similar to what is done at conferences.		
Content and organisation	Depends on the project and on the supervisor.		
Acquired	At the end of this module, the student will:		
competencies	- Have knowledge how researchers work in the lab		
	- Be able to acquire specific knowledge on a research project		
	- Get some hands-on experience in the chosen field.		
Performance	Final examination		
Appraisal	Type of Examination: oral presentation followed	d by questions	
Prerequisites	Basic physics background		
Literature	Depends on the project and on the supervisor.		

	angue Etra	ngère – French as a Foreign	Semestre : M1 – S1	
Language				
Module		a Foreign Language	Code : SPHAU65	ECTS : 3
Person in charge	Cécile THIRION			
Lecturer (s)	Cécile THIRION			
Workload	TD : 24h		Homework & self-stu	
Objectives	For students to acquire a competency in communication in the French language and an understanding of French society and culture so that they may express themselves, write directly, and express comprehension when communicating with French speakers.			
Content and organisation	I.	Four areas of language competency will be covered – oral and written comprehension, oral and written communication – but emphasis will be placed on oral competency, therein integrating pragmatic, socio-cultural and strategic proficiencies according to the Common European Framework of Reference for Languages (CEFR).		
	II.	The lesson plans for this class will be communicative and action-oriented. As the approach will be centered on students engaging in communicative tasks, there will be flexibility in the choice and duration of the class activities. The course program will therefore be adapted to best fit the linguistic needs of each level. The topics covered may vary depending on local, national or international news and the time of year.		
	III.	The course is not a lecture and participation. Class attendance is absence, the student is invited to homework given during the stud be available on a digital workspace Resources and training materials songs, videos, playful material fro and written or audio documents f	strongly recommended make up the work do ent's absence. Docume e. s: authentic document om the publisher or ma	d. In the case of an ne in class and any ents from class will s, articles, photos, ade by the teacher
Acquired competencies	Varies according to the level of each group.			
Performance Appraisal	Continuous assessment: oral comprehension, written comprehension, exercises relating to grammar and vocabulary lessons, oral presentation.			
Prerequisites	Adapted ac	cording to the level of each group.		
Literature		ire des premiers temps (PUG) Progressive du Français (Clé Interna	ational)	

Semestre 2

Curriculum

Η	S2 - AMU	ECTS
30	Guided Optics	3
20	Nonlinear Optics	2
20	Physics for Photonics II	2
30	Optoelectronic Devices	3
15	Photon Spectroscopy	2
15	Molecular Cell Biology	2
30	Advanced Elm - Numerical	3
30	Labs Practice	3
30	Signal and Image Analysis	3
24	FLE ou English	2
$> 7 \mathrm{w}$	Internship	5
214	Total	30

Modules description - AMU

UE02 - Guided C	Optics	Semestre : M1 – S2		
Module	Guided Optics	Code : SPHBU94 ECTS : 3		
Person in charge	Prof. G. Renversez			
Lecturer (s)	Prof. G. Renversez			
Workload	CM:15h / TD:15h / TP:0h	Homework & self-studies :		
Objectives	The students from different backgrounds elab	-		
	get also a know-how in the theoretical stud			
	general optical devices. They become familia			
	manipulate them.	i with the concept of modes and are usic to		
Content and	1 Main introduction	4.1 Introduction		
		4.1 Introduction 4.2 Wave-packet and co		
organisation	2 Maxwell's equations	4.3 Signal enlargement		
	2.1 Maxwell's equations	4.3.1 Extent of a signal		
	2.2 Continuity relations	4.3.2 Distortion of a signal during the		
	2.2.1 General case	propagation		
	2.2.2 Perfect conductor case	propagation		
	2.3 Constitutive equations	5 Optical fiber		
	2.3.1 General cases	5.1 Definition		
	2.3.2 Frequency domain	5.2 Technological aspects		
	2.3.3 Our pratical case: a very	5.2.1 Attenuation in optical fibres		
	2.4 Plane waves	5.2.2 Transmission windows		
	2.5 Poynting vector	5.2.3 Materials for optical fibres		
	2.5 1 6 jilling (66161	5.3 Initial equations		
	3 Slab waveguide	5.4 Form of the solutions		
	3.1 Introduction	5.4.1 Forms of the propagating modes		
	3.2 Geometry and indices	5.4.2 Transverse components of the fields		
	3.3 TE/TM splitting	5.4.3 Azimuthal dependency		
	3.4 Propagation equations	5.5 The circular step-index fiber		
	3.4.1 Transverse E waves (TE)	5.5.1 Recap equations for the radial		
	3.4.2 Transverse M waves (TM)	dependency		
	3.5 Dispersion equation	5.6 Solutions in the core fibre		
	3.5.1 Conditions to obtain a guided wave	5.7 Solutions in the cladding		
	3.5.2 Form of the electric field profile in	n 5.7.1 Orthoradial components 5.7.2 Consequences of the continuity		
	the guiding layer			
	3.5.3 Obtaining of the dispersion equation			
	for the TE case	5.8 Guided modes of the circular SIF		
	3.5.4 field profile in the TE case	5.8.1 Transverse modes		
	3.5.5 Comments on the dispersion equation	5.8.2 Hybrid modes HE v, µ and EH v, µ		
	3.5.6 Discussion of the dispersion equation	5.9 Cut-Off frequencies		
	3.6 General properties of modes	5.9.1 Cut-Off frequencies of TE 0,v and		
	3.6.1 Mode orthogonality	TM 0,v transverse modes		
	3.7 The symmetric case	5.9.2 Cut-Off frequencies of EH ν , μ and		
	3.7.1 Symmetry properties (parity)	HE ν,μ hybrid modes		
	3.7.2 Even TE modes in the symmetric slab	5.10 Scalar modes		
	waveguide	5.10.1 Introduction		
	3.7.3 Odd TE modes in the symmetric slab	5.10.2 Scalar wave equation		
	waveguide	5.10.3 Forms of the solutions		
	3.7.4 Mode numbering	5.10.4 Dispersion equations		
	3.7.5 Dispersion curves	5.10.5 Mode profiles		
	3.7.6 Quantization of mode localization in	5.10.6 Power fraction in the core		
	waveguide: confinement factor			
		Several tutorials are realized during the		
	4 Propagation of a signal	semester including one on surface plasmon		
		polaritons and one for graded index		
		waveguide.		
Acquired	The students			
competencies	• can derive the dispersion equation	on for simple waveguides including slab		
	waveguides and step-index optical fibers			
	 can analyse the dispersion properties 			

	• understand the generalization of the waveguide studies for more complex		
	configurations		
	 manipulate the waveguides guided modes as the solutions of eigenvalue problems 		
	 understand the link between waveguide symmetries and mode classification 		
	 understand the link between waveguide dispersion properties and signal propagation 		
	 know the main technological aspects of optical fibers 		
	have the knowledge and know-how to understand and use the standard textbooks		
	on this field including for new photonic structures		
Performance	Final examination		
Appraisal	Type of Examination: 3h written exam		
Prerequisites	Mathematical background, fundamentals in Mathematics including basic linear algebra,		
	and vector analysis, basics of wave physics, Maxwell's equations, electromagnetic plane		
	waves		
Literature	K. Okamoto: Fundamentals of optical waveguides		
	A. W. Snyder & J. D. Love: Optical waveguide theory		
	H. Kogelnik: Integrated Optics,		
	D. Marcuse: Light Transmission Optics		
	D. Marcuse: Theory of Dielectric Optical Waveguides		
	CL. Chen: Foundations for guided-wave optics		

UE10 - Nonlinea	r optics	Semestre : M1 – S2
Module	Nonlinear optics	Code : SPHBU93 ECTS : 2
Person in charge	Frank WAGNER	
Lecturer (s)	Frank WAGNER, Konstantinos ILIOPOULOS	
Workload	CM:20h / TD:0h / TP:0h	Homework & self-studies : 15 h
Objectives	This course	,
		chi2 effects
Content and organisation	 Part 1 – Introduction, general definitions and of 1. Introduction Explaining the name - The origin of the nonliner. The polarization density and the susceptibilith homogeneous materials - P^((n)) induced by a List and classification of NLO effects The symmetries of higher order susceptibilit crystalline materials - Contracted notation for of Simplified photon picture of NLO effects - Three-wave interaction: Momentum conservation 2. Linear but anisotropic optics Propagation in an anisotropic medium - Princip plane wave solutions: normal indices and norm Optical axis and material classification Graphical representation of the normal indices Back to phase-matching: The "types" of phase reference of the exact version - The approximated version for Energy conservation and the Manley-Rowe relation Second harmonic generation (SHG) - Conve Comparing phase-matched conversion to mismatch and crystal length - Noncritical phase with pump depletion Experimental realization of the phase if more than one beam is incoming Phase matched optical parametrical amplific approximation Influence of the crystal anisotropy: effective nerge of collinear type I SHG in KDP. Part 2 – Third order nonlinear optical response 5. Intensity dependent refractive index (optic nonlinear optical parameters, physical origin of 6. The Z-scan technique A single beam setup allowing the determination absorption of appropriate materials. 7. Temporal studies of the optical nonlinearit. 	arity in P(E) y tensors - For time-invariant, local and superposition of monochromatic waves ies - Symmetries of material tensors in chi2-tensors e-wave interaction: Energy conservation - ion (= phase-matching) al axes and principal indices - Propagative al modes as k-surfaces matching or three wave interaction - ations rsion with negligible pump depletion - smatched conversion - Tolerated phase se matching - Phase matched conversion n of high efficiency SHG - The importance g ation (OPA) in the non-depleted pump onlinearity parameter deff - The example e al Kerr effect), The nonlinear refractive index. n of the nonlinear refraction and
	8. Applications	
	Nonlinear optical microscopy, applications relat absorption	
Acquired competencies	At the end of this module, the student will be a - Understand the formalism of the class - Find directions of phase matching in a - Establish the system of differential equ - Understand the physics of frequently e - Know some basic applications of NLO	ical description of nonlinear optics nonlinear optical crystal

Performance	Final examination
Appraisal	Type of Examination: written exam
Prerequisites	Complex numbers, Electromagnetics, Linear Algebra, Tensor calculus, Differential equations
Literature	"The Elements of Nonlinear Optics", Butcher & Cotter, with the (few) corrections given in: Fredrik Jonsson, "Nonlinear Optics" (KTH, Stockholm, Sweden). Full text available at: https://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A25333&dswid=3719 (See also page 9 (p.15 of the pdf) for more books and comments on them.) "Nonlinear Optics", Robert W. Boyd

UE03 - Physics	for photonics part 2	Semestre : M1 – S2		
Module		Code : SPHBU95	ECTS : 2	
Person in charge	Voicu Dolocan			
Lecturer (s)	Voicu Dolocan			
Workload	CM:13h / TD:7h	Homework & self-stu	dies :	
Objectives	Photonics is based on the interaction between light and matter. A knowledge of the atom structure and matter physics is needed to understand different types of interaction processes. The main objective of this course is to give students fundamental notions on condensed matter physics.			
Content and organisation	 Mechanical properties: cohesion, elasticity and lattice dynamics (phonons) Electronic structure: single electron model, Schrodinger equation and symmetry, nearly-free and tightly bound electrons, electron-electron interaction and band structure Electron dynamics and basic transport properties. Semiconductors Magnetic properties, magnetotransport Optical properties 			
Acquired competencies	 The students understand the different states of properties can describe the different models that are familiar with the electronic structu 	explain these propertie		
Performance	Final examination			
Appraisal	Type of Examination: written exam			
Prerequisites	Physics for Photonics 1 Introductory Quantum Mechanics Solid mathematical background			
Literature	M. Marder, Condensed Matter Physics			

UE04 - Propertie optoelectronic o	es, fabrication and characterization of levices	Semestre : M1 – S2	
Module		Code : SPHBU96	ECTS : 3
Person in charge	Jean-Yves Natoli		
Lecturer (s)	Jean-Yves Natoli, Judikaël De Rouzo		
Workload	CM : 20h / TD : 10h	Homework & self-studie	25 :
Objectives	Optoelectronic devices and circuits are now core technologies for several key technical areas such as telecommunications, information processing, optical storage, lighting, and sensors. Objectives of this course is to give firstly to students fundamental notions in semiconductors for optoelectronics phenomenon, secondly details on components (emitters and detectors). A third part will describe the process of fabrication and characterization of devices.		
Content and	Part 1		
organisation	 Basis of semiconductors physics: (band structure/Ek diagram/Junction theory/ hetero- junction structure) electroluminescence phenomenon Light-emitting diode (LED) and applications Laser LED: structures and properties (edge, MQW, DFB, tunable, VCSEL) Part2 Fundamental for detection Photodetectors Imaging sensors Solar cells Part 3: Fabrication and characterization (Main difference between electronic and optoelectronic fabrication processes 		
Acquired competencies	The students understand the properties of semicor can describe the different models that are familiar with the electronic struct can chose materials and devices regard have knowledge on process technolog devices 	t explain these properties ure of materials ding applications y for the fabrication of a ran	
Performance Appraisal	Oral Presentation (chosen topic) + Final exami		
Prerequisites	Introduction to Material Science - Basis in electronics systems		
Literature	-Optoelectronics & Photonics: Principles & Practices -A. Rogalski, Infrared Detectors, 2nd edition, CRC Pr -Wei-Chic Wang, "Optical detectors" & "Radiometry	ess, Boca Raton, Florida (201	0).

UE06 - Photon S	spectroscopy	Semestre : M1 – S2	
Module	Photon Spectroscopy	Code : SPHBUA2 ECTS : 2	
Person in charge	Julien Duboisset		
Lecturer (s)	Julien Duboisset		
Workload	CM : 15 h	Homework & self-st	udies :
Objectives	Photonics Spectroscopy is based on the interaction between light and matter. A knowledge of the molecule structure and matter physics is needed to understand different types of interaction processes. The main objective of this course is to give students a fundamental basic understanding of the light-matter interaction processes used in spectroscopy.		
Content and organisation	Molecular structure		
organisation	 InfraRed absorption Raman scattering – point group symmetries Fluorescence Nonlinear optics: second harmonic and sum frequency generation, coherent Raman scattering 		
Acquired competencies	 The students understand the different states of matter and what give materials their properties can describe the different processes, their usefulness, their advantages, drawbacks for spectroscopy or imaging purpose. are familiar with light matter interaction 		
Performance	Final examination		
Appraisal	Type of Examination: written exam based on the lecture – usually no document is allowed		
Prerequisites	Physics for Photonics 1 Introductory Quantum Mechanics Solid mathematical background Imaging		
Literature	Principles of Fluorescence Spectroscopy, Lakowicz, Nonlinear optics, Boyd Symmetry and spectroscopy, Bertolucci		

UE07 - Introduct	tion to molecular cell biology	Semestre : M1 – S2	
Module	Introduction to molecular cell biology	Code : SPHBUA3	ECTS : 2
Person in charge	Loic Le Goff		
Lecturer (s)	Loic Le Goff/Manos Mavrakis/Julien Savatier		
Workload	CM : 16 h		
Objectives	The course will provide basic knowledge in mole	cular and cell biology	, and describe the
	molecular tools that biologists use in order to study and label molecules and structures		
	of interest, in particular using fluorescence microscopy.		
Content and	I – Introduction		
organisation	What is life ?		
	Biomolecules (carbohydrates, lipids, pro	oteins. nucleic acids)	
	Cell organization, types and structures (ctions)
	 DNA, RNA and proteins, genetic code 		,
	Cell division (mitosis)		
	II – Experimental model systems and methodolog	ZV	
	 Cell and animal model systems in biology 		
	 Experimental approaches for studying bi 	-	
	 Molecular cloning, Polymerase chain rea 		
	III – Fluorescent labeling		
	Chemical labeling of proteins, immunoflu	uorescence	
	Green Fluorescent Protein (GFP), genetic		
	IV – Cells in organs		
	Cell types		
	Cell differentiation		
	Stem cells		
	V – Gene regulation		
	The central Dogma of molecular Biology		
	 The basic mechanisms of genetic regulation: enhancers, promoters, 		
	• The basic mechanisms of genetic regulation, enhancers, promoters, transcription factors		
	Gene regulatory networks		
Acquired	Know the different families of biomolecules an	d their role	
competencies			and differentiate
competencies	Recognize different organelles and cytoskeletal filaments of a cell, and differentiate coll types		
	cell types Know the link and mechanisms between DNA, RNA and proteins 		
	 Summarize stages of mitosis and know what di 		
	 Being able to choose the proper model system 	-	atal approach for
	addressing a biological question	stem and experime	
	 Being able to use PCR for molecular cloning and 	d detection of viral in	fection
	 Being able to disc reaction indicedual cloning and Being able to fluorescently label specific protein 		
	tissues		
	• Understand the basics of gene regulation, its	s importance in the	context of animal
	development, and know about the techniques		context of animal
Performance	Final examination		
Appraisal	Type of Examination: written exam		
Prerequisites	None		
Literature	Molecular Biology of the Cell, Bruce Alberts et al		
Literature	worecular biology of the Cell, bluce Alberts et al		

UE08 - Advance	d Electromagnetics 1 – Num. Approach	Semestre : M1 – S2	
Module	Advanced Electromagnetics 1	Code : SPHBU97	ECTS : 3
	Numerical Approach		
Person in charge	Amelie Litman		
Lecturer (s)	Amelie Litman		
Workload	CM:0h / TD:0h / TP:30h	Homework & self-stu	<i>dies : 30</i> h
Objectives	This course introduces students to MATLA	AB programming and	l visualization of
	electromagnetic fields. The students will acquire		
	of electromagnetic fundamentals by teaching th		
	a series of computer exercises solving optical phenomena on rigorous grounds.		
	The first part, "Discovering Matlab", serves as an	introduction to progra	imming languages,
	numerical schemes and the Matlab environmen	ıt.	
	In the second part, "Electromagnetic simulation		-
	interactions will be numerically explored by the	students, ranging from	n diffraction to the
	optical responses from stratified media.		
Content and	Part 1 – Discovering Matlab		
organisation	1. Arrays and operators in Matlab		
	2. Working with files and functions		
	3. Graphs, 2D and 3D plots		
	4. Minimization and optimization		
	Part 2 – Electromagnetic simulations		
	1. Diffraction and interferences (scalar theory, Huygens-Fresnel principle,		
	Fraunhofer)		
	2. Reflection/Transmission of a plane wave at a planar interface		
	 Reflection/Transmission of a plane wave on a multilayer system (anti-radar coating, Bragg mirror,) 		
	4. Color rendering		
	5. Solar cells		
Acquired	At the end of this module, the student will be al		
competencies	 Solve real-time complex physical problem 	-	-
	- Implement numerical strategies to	model optical multila	yered media and
	improve their performances		o nhonomere for
	 Generate graphs to illustrate and an articles and reports 	haiyse electromagneti	c phenomena for
Performance	Final examination		
Appraisal	Type of Examination: computer exam		
Prerequisites	Electromagnetics, Linear Algebra		
Literature	"Classical Electrodynamics" John David Jackson		
	"Introduction to Fourier Optics" Joseph W. Goo	dman	
	"Computational Electromagnetics with MATLAB		u
	"Fundamentals of Electromagnetics with MATLA	AB " Karl E. Lonngren	

UE09 - Laborato	ory project and practice work	Semestre : M1 – S2	
Module		Code : SPHBU98 ECTS : 3	
Person in charge	Frank WAGNER		
Lecturer (s)	Frank WAGNER, Amélie FERRE		
Workload	CM:0h / TD:0h / TP:30h /	Homework & self-studies : 16 h	
Objectives	Knowledge of avanced optical elements and simul	lations	
Content and	All students will make 4 experimental projects of 2x4h:		
organisation			
	1. Nd:YAG lasers:		
	Learn about laser safety, Make the laser work (s		
	limits of the stability of the cavity, Explore the t		
	pulses, Show the existence of multiple longituding	al modes, Convert the laser to another	
	wavelength, Explore the conversion efficiency.		
	1. Diode lasers:		
	Learn about laser safety. Explore the wavelength c		
	changes observed in the coherence of the emitted		
	Measure the slope efficiency. Describe the 'optical		
	curve. Explore beam profile and divergence of t orientation of the p-n-junction? What is the polar		
	onentation of the p-n-junctions what is the polar		
	3. Optical modulation		
	Acousto Optical Modulator: Understand your moc	-	
	modulate amplitude? Which additional elements a		
	transmission setup (for music)? What is the best modulation contrast you can obtain?		
	This modulator is used for frequency stabilization of lasers. How is this done? <i>Electro Optical Modulator:</i> Understand your modulator		
	Can it modulate phase? Can it modulate amplitude? Which additional elements are		
	needed to create an optical free space transmission setup (for music)? Realize the		
	setup. Understand the limits of the setup, distortions		
	4. Simulations for optics		
	Using Matlab or Pyhton for assessing an imaging setup within a diffraction formalism.		
	Implement two coherent point sources that irradiate through a round aperture. What is		
	seen on a screen after the aperture? Is there a particular (best) location for the screen?		
	Implement a plano-convex les in the aperture. How does this change the pattern on the		
	screen? Is there a particular (best) location for the screen? Find and discuss the resolution		
	of your imaging system.		
	Using Oslo to compare the performance of optic	al components, design and optimize a	
	simple zoom objective. Explain how it works.	Explain its limitations. Describe its	
	performance.		
Acquired	At the end of this module, the student will be able to:		
competencies	 Understand how lasers work including Q-switching, and frequency conversion 		
	- Understand how AOMs and EOMs work.		
	 Make a electromagnetic simulation based on the Fresnel diffraction Have some experience with optical design software. 		
Performance	- Have some experience with optical design software. Evaluation of the reports		
Appraisal	Type of Examination: written reports		
Prerequisites	Independent learning capacities, laser theory, basic physics, programming in Matlab or		
	Python, basics of ray tracing, solid state physics, anisotropic optics		
Literature			

id image analysis	Semestre : M1 – S2	
Signal and image analysis	Code : SPHBU92 ECTS : 3	
Jean-Marc Themlin		
Jean-Marc Themlin, Laurent Nony		
CM : 20 h / TP : 10 h or 10h/20h TP Homework & self-studies : 25h		
The students will learn a significant number of b and theory. They will develop awareness of a n systems engineering commonly addresses, an signals and systems problems using GNU Octav R&D worldwide.	umber of problems/tasks that signals and nd will be capable of resolving realistic	
We start with 9 hours of lectures and then go on to 8 laboratory sessions based on MatLab [®] (or GNU Octave) and implement their own solutions, <i>e.g.</i> in signal estimation and identification, ubiquitous issues in signal processing.		
Short introductory lectures treat :		
(analog) and discrete-time signals, images a waveform point of view. Continuous-time mathematical expressions or by the use of orth Fourier series. Properties of these waveforms, (RMS) value, energy and power, magnitude a	art A : Signals : Present the essential tools commonly used to describe continuous-time analog) and discrete-time signals, images and noise, mostly from a deterministic vaveform point of view. Continuous-time waveforms are represented by direct nathematical expressions or by the use of orthogonal series representations such as the pourier series. Properties of these waveforms, such as their DC value, root-mean-square RMS) value, energy and power, magnitude and phase spectrum (through the Fourier ransform), power spectral density, and bandwidth, are recalled or established.	
In the frequency-domain, analog and digital signals are represented by their Fourier transform. The Discrete Fourier Transform (DFT), when properly applied, allows the computation of spectra. Part B : Systems : Used to manipulate analog or digital waveforms, exploiting various operations like scalar product, convolution and correlation. In addition, effects of linear filtering is introduced. Actual systems used in signal storage, transmission and modulation, multiplexing, video signal coding, lossy signal compression (principle of JPEG standard) will be explained.		
		 Lab 1 : Signal representation using GNU-Oc functions, application to the <i>sinc</i> signal. Lab 2 : Representation of analog signals & discrete sinusoids, discrete frequency and Shannon-Nyquist theorem. Lab 3 : Signal Parameter Estimation – Par sinusoidal signal (of known frequency f₀) usin ratio and on the precise knowledge of f₀. Lab 4 : Signal Parameter Estimation – Par sinusoidal signal (of unknown frequency), a Fourier Transform (DFT). Lab 5 : Signal recognition through Correlation reference signal hidden in a noisy signal us ("real-time") correlation; application to Rada Lab 6 : FIR Filtering: From running correlati digital filters, used <i>e.g.</i> to extract a sinusoid of Lab 7 : Discrete Fourier Transform: Empirica the DFT tool, supported by a complete and s Jupyter notebook). Lab 8 : Image Processing and Filtering: Ge (images), digital filtering of images.
	 Signal and image analysis Jean-Marc Themlin Jean-Marc Themlin, Laurent Nony CM: 20 h / TP: 10 h or 10h/20h TP The students will learn a significant number of b and theory. They will develop awareness of a n systems engineering commonly addresses, ar signals and systems problems using GNU Octave R&D worldwide. We start with 9 hours of lectures and then g MatLab® (or GNU Octave) and implement their and identification, ubiquitous issues in signal prises Short introductory lectures treat : Part A : Signals : Present the essential tools cor (analog) and discrete-time signals, images ar waveform point of view. Continuous-time mathematical expressions or by the use of orth Fourier series. Properties of these waveforms, (RMS) value, energy and power, magnitude a transform), power spectral density, and bandw In the frequency-domain, analog and digital transform. The Discrete Fourier Transform (E computation of spectra. Part B : Systems : Used to manipulate analog operations like scalar product, convolution and filtering is introduced. Actual systems use modulation, multiplexing, video signal coding, I standard) will be explained. Lab 1 : Signal representation using GNU-Oc functions, application to the <i>sinc</i> signal. Lab 2 : Representation of analog signals I discrete sinusoids, discrete frequency and Shannon-Nyquist theorem. Lab 3 : Signal Parameter Estimation – Par sinusoidal signal (of unknown frequency), ar sinusoidal signal hidden in a noisy signal us ("real-time") correlation; application to Rada Lab 6 : FIR Fil	

Acquired competencies	 The students will be able to : Exploit <i>Matlab</i>[®] (or its open-source equivalent <i>GNU-Octave</i>) to develop useful and realistic "<i>expert systems</i>" in digital signal and image processing, <i>e.g.</i> signal estimation and identification. Become accustomed to modern means of performing personal or team work on scientific calculations and novel ways of sharing data, programs and results (through the use of the <i>CoCalc</i>[®] platform). Practice personal exploration through trials and enquiries, and thus develop adequate research skills in digital signal and image processing. 	
Performance Appraisal	30% Lab marks + 70% Final examination (on PC)	
Prerequisites	Basic programming knowledge, basic mathematical background in signal theory (Fourier transform).	
Literature	 Richard J.Tervo, Practical Signals Theory (with MatLab Applications), Wiley (2014) Hwei Hsu, Signals and Systems (2nd edition), Schaum's Outline Series, Mac Graw Hill (2011) Steven W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, www.dspguide.com. 	

UE11 - French a	s a Foreign Language	Semestre : M1 – S2	
Module	French as a Foreign Language	Code : SPHBUA5 ECTS : 2	
Person in charge	Cécile THIRION		
Lecturer (s)	Cécile THIRION		
Workload	TD : 24h	Homework & self-studies : 24-48 h	
Objectives	For students to acquire a competency in communication in the French language and an understanding of French society and culture so that they may express themselves, write directly, and express comprehension when communicating with French speakers.		
Content and organisation	comprehension, oral and placed on oral competency strategic proficiencies acco	Four areas of language competency will be covered – oral and written comprehension, oral and written communication – but emphasis will be placed on oral competency, therein integrating pragmatic, socio-cultural and strategic proficiencies according to the Common European Framework of Reference for Languages (CEFR).	
	the approach will be center there will be flexibility in t The course program will the of each level. The topics co	The lesson plans for this class will be communicative and action-oriented. As the approach will be centered on students engaging in communicative tasks, there will be flexibility in the choice and duration of the class activities. The course program will therefore be adapted to best fit the linguistic needs of each level. The topics covered may vary depending on local, national or international news and the time of year.	
	participation. Class attenda absence, the student is inv homework given during th	The course is not a lecture and its success depends greatly on student participation. Class attendance is strongly recommended. In the case of an absence, the student is invited to make up the work done in class and any homework given during the student's absence. Documents from class will be available on a digital workspace.	
	songs, videos, playful mate	Resources and training materials : authentic documents, articles, photos, songs, videos, playful material from the publisher or made by the teacher and written or audio documents from manuals, methods or sites.	
Acquired competencies	Varies according to the level of each gro	up.	
Performance Appraisal	Continuous assessment: oral comprehension, written comprehension, exercises relating to grammar and vocabulary lessons, oral presentation.		
Prerequisites	Adapted according to the level of each group.		
Literature	La Grammaire des premiers temps (PUG) Grammaire Progressive du Français (Clé International)		

Semestre 3

Curriculum

Η	S3 - AMU	ECTS
20	Tutorials	2
22	Quantum Optics	3
34	Laser sources and application / matter interaction	3
34	Optical components and optoelectronics	3
24	Photonics for Biomedical Applications	3
24	Advanced Methods for Optical Instrumentation	3
24	Advanced Electromagnetics II (Elective)	3
28	Nanophotonics (Elective)	3
32	Numerical Methods for Elm (Elective)	3
34	Instrumentation for Astronomy (Elective)	3
7w	Apprenticeship	3
20	Technological Intelligence	2
24	FLE ou English	2
320	Total	36

Modules description - AMU

UE00 Tutorials	S	Semestre : 3	
Module		Code : SPHCUH6	ECTS : 2
Person in charge	Miguel Alonso		
Lecturer (s)	Miguel Alonso		
Workload	CM:20 / TD:/		
Objectives			
Content and	1. Basic elements		
organisation	Review Maxwell, wave eq., plane waves.		
organisation	Intensity & Poynting vector.		
	Polarization: linear, elliptic, circular.		
	Conventions.		
	2. Optical elements and Jones calculus		
	Jones vectors: conventions.		
	Bases (mutually unbiased).		
	Polarizers, retarders, dichroic and active media.		
	Jones matrices.		
	Unitary and projective matrices: conservation of	f norm and scalar p	product for unitary
	operations.		
	Concatenation of elements (e.g. circular polarizers	5).	
	3. The Poincaré sphere		
	Parametrization of Jones vector in terms of an	ngles and phase: F	Poincaré Sphere in
	spherical coordinates.		
	Stokes parameters: Poincaré Sphere in Cartesian c		
	Retarders (unitary transformations) as rotators ov	-	ere.
	Effect of dichroics and polarizers on Poincaré sphe	ere (exercise?).	
	4 Geometric phase		
	 Geometric phase Phase of inner product and parallel transport. 		
	Geometric phase (Pancharatnam and Berry).		
	Geometric phase (Pancharathan and Berry). Geometric phase elements and some applications.		
	Phase of inner product for retarders (not parallel t		
	Redirection geometric phase.		
	5. Partial polarization		
	Theory of stochastic processes.		
	Partial polarization: polarization matrix.		
	Degree of polarization: definition as part of light the		l.
	Degree of polarization: definition in terms of "puri	•	
	Interpretation as radial coordinate in Poincaré sph		
	Stokes parameters as coefficients of Pauli matrices	S.	
	6. Mueller calculus		
	6. Mueller calculus Mueller matrices for retarders, polarizers.		
	General matrices.		
	Rules.		
	Depolarization.		
	Lu-Chipman decomposition.		
	7. Measurement techniques		
	Theoretical considerations.		
	Accuracy limits.		
	Polarization measurement techniques (survey).		
	8. Applications in metrology		

Ellipsometry and scatterometry. Medical imaging. Remote sensing. Microscopy: e.g. DIC. Weak measurements. 9. Applications in quantum optics and communications Polarization multiplexing. Beamsplitters. QKD protocols. 10. Polarization distributions Fields with non-uniform polarization. Vector beams. Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples. 11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications. Acquired competencies * know how to		
Remote sensing. Microscopy: e.g. DIC. Weak measurements.9. Applications in quantum optics and communications Polarization multiplexing. Beamsplitters. QKD protocols.10. Polarization distributions Fields with non-uniform polarization. Vector beams. Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples.11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarizations.Acquired competenciesThe students • know how toPerformance AppraisalFinal examination • written exam		Ellipsometry and scatterometry.
Microscopy: e.g. DIC. Weak measurements.9. Applications in quantum optics and communications Polarization multiplexing. Beamsplitters. QKD protocols.10. Polarization distributions Fields with non-uniform polarization. Vector beams. Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples.11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesThe students • know how toPerformance AppraisalFinal examination Type of Examination: written exam		
Weak measurements.9. Applications in quantum optics and communications Polarization multiplexing. Beamsplitters. QKD protocols.10. Polarization distributions Fields with non-uniform polarization. Vector beams. Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples.11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesFinal examination Type of Examination: written exam		5
9. Applications in quantum optics and communicationsPolarization multiplexing.Beamsplitters.QKD protocols.10. Polarization distributionsFields with non-uniform polarization.Vector beams.Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines.Examples.11. Nonparaxial polarizationHigh NA focusing: Richards and Wolf method.Focusing of radial and azimuthal light.Spin-orbit coupling.Evanescent waves and surface plasmons.Generalized Stokes parameters.Two-point spheres.Polarization textures: Möbius strips, Skyrmions, etc.Applications.RequiredFinal examinationAppraisalType of Examination: written exam		
Polarization multiplexing. Beamsplitters. QKD protocols.10. Polarization distributions Fields with non-uniform polarization. Vector beams. Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples.11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesFinal examination Type of Examination: written exam		Weak measurements.
Polarization multiplexing. Beamsplitters. QKD protocols.10. Polarization distributions Fields with non-uniform polarization. Vector beams. Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples.11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesFinal examination Type of Examination: written exam		
Beamsplitters. QKD protocols.10. Polarization distributions Fields with non-uniform polarization. Vector beams. Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples.11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesThe students • know how toPerformance AppraisalFinal examination Type of Examination: written exam		
QKD protocols.10. Polarization distributions Fields with non-uniform polarization. Vector beams. Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples.11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesThe students • know how toPerformance AppraisalFinal examination Type of Examination: written exam		Polarization multiplexing.
10. Polarization distributionsFields with non-uniform polarization.Vector beams.Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines.Examples.11. Nonparaxial polarizationHigh NA focusing: Richards and Wolf method.Focusing of radial and azimuthal light.Spin-orbit coupling.Evanescent waves and surface plasmons.Generalized Stokes parameters.Two-point spheres.Polarization textures: Möbius strips, Skyrmions, etc.Applications.PerformanceAppraisalType of Examination: written exam		Beamsplitters.
Fields with non-uniform polarization.Vector beams.Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines.Examples. 11. Nonparaxial polarization High NA focusing: Richards and Wolf method.Focusing of radial and azimuthal light.Spin-orbit coupling.Evanescent waves and surface plasmons.Generalized Stokes parameters.Two-point spheres.Polarization textures: Möbius strips, Skyrmions, etc.Applications.AcquiredcompetenciesFinal examinationAppraisalType of Examination: written exam		QKD protocols.
Fields with non-uniform polarization.Vector beams.Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines.Examples. 11. Nonparaxial polarization High NA focusing: Richards and Wolf method.Focusing of radial and azimuthal light.Spin-orbit coupling.Evanescent waves and surface plasmons.Generalized Stokes parameters.Two-point spheres.Polarization textures: Möbius strips, Skyrmions, etc.Applications.Acquired competenciesFinal examination Type of Examination: written exam		
Vector beams.Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines.Examples. 11. Nonparaxial polarization High NA focusing: Richards and Wolf method.Focusing of radial and azimuthal light.Spin-orbit coupling.Evanescent waves and surface plasmons.Generalized Stokes parameters.Two-point spheres.Polarization textures: Möbius strips, Skyrmions, etc.Applications.Acquiredto know how toPerformanceAppraisalType of Examination: written exam		10. Polarization distributions
Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines. Examples.11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesThe students • know how toPerformance AppraisalFinal examination Type of Examination: written exam		Fields with non-uniform polarization.
Examples. 11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesThe students • know how toPerformance AppraisalFinal examination Type of Examination: written exam		Vector beams.
11. Nonparaxial polarization High NA focusing: Richards and Wolf method. Focusing of radial and azimuthal light. Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications.Acquired competenciesThe students how how toPerformance AppraisalFinal examination Type of Examination: written exam		Polarization singularities: c-points (Lemons, Stars, Monstars) and L-lines.
High NA focusing: Richards and Wolf method.Focusing of radial and azimuthal light.Spin-orbit coupling.Evanescent waves and surface plasmons.Generalized Stokes parameters.Two-point spheres.Polarization textures: Möbius strips, Skyrmions, etc.Applications.Acquired competenciesFinal examinationAppraisalType of Examination: written exam		Examples.
High NA focusing: Richards and Wolf method.Focusing of radial and azimuthal light.Spin-orbit coupling.Evanescent waves and surface plasmons.Generalized Stokes parameters.Two-point spheres.Polarization textures: Möbius strips, Skyrmions, etc.Applications.Acquired competenciesFinal examinationAppraisalType of Examination: written exam		
Focusing of radial and azimuthal light.Spin-orbit coupling.Evanescent waves and surface plasmons.Generalized Stokes parameters.Two-point spheres.Polarization textures: Möbius strips, Skyrmions, etc.Applications.Acquired competenciesPerformance AppraisalFinal examination Type of Examination: written exam		11. Nonparaxial polarization
Spin-orbit coupling. Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications. Acquired competencies Performance Appraisal		High NA focusing: Richards and Wolf method.
Evanescent waves and surface plasmons. Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications. Acquired competencies Final examination Appraisal		Focusing of radial and azimuthal light.
Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications. Acquired competencies • know how to Performance Appraisal Type of Examination: written exam		Spin-orbit coupling.
Generalized Stokes parameters. Two-point spheres. Polarization textures: Möbius strips, Skyrmions, etc. Applications. Acquired competencies • know how to Performance Appraisal Type of Examination: written exam		Evanescent waves and surface plasmons.
Polarization textures: Möbius strips, Skyrmions, etc. Applications. Acquired competencies Performance Appraisal Final examination Type of Examination: written exam		
Polarization textures: Möbius strips, Skyrmions, etc. Applications. Acquired competencies Performance Appraisal Final examination Type of Examination: written exam		Two-point spheres.
Acquired competencies The students • know how to • know how to Performance Appraisal Final examination Type of Examination: written exam		
Acquired competencies The students • know how to • know how to Performance Appraisal Final examination Type of Examination: written exam		
competencies• know how toPerformanceFinal examinationAppraisalType of Examination: written exam	Acquired	The students
Performance Final examination Appraisal Type of Examination: written exam	-	• know how to
Appraisal Type of Examination: written exam	-	
	Performance	Final examination
Prerequisites Elecromagnetism	Appraisal	Type of Examination: written exam
	Prerequisites	Elecromagnetism
Literature	Literature	

UE01 Quantum	Optics and Quantum Information	Semestre : M2 – S3	
Module		Code : SPHCUH7 ECTS : 2 (ou 3 ?)	
Person in charge	Thomas Durt		
Lecturer (s)	Thomas Durt		
Workload	CM : 18 h / TD : 4 h	Homework & self-stud	<i>dies :</i> 8 h
Objectives	The goal of our lessons is to familiarize the student with a quantum description of light; in particular it is aimed at introducing fundamentals in quantum optics and quantum information. Concepts such entanglement, vacuum fluctuations, second quantization and so on are indeed necessary in order to go beyond the classical Maxwell description. In our teachings, we aim at providing a survey of the progresses realized between Planck's derivation of the black body distribution in 1900, and quantum teleportation one century later, not fogetting precise predictions regarding spontaneous emission (Fermi golden rule-30's), the machinery of coherent states produced by a laser source (60's) and the so-called second quantum revolution initiated in the 90's. The tools that we introduce aim at giving to the student the ability to understand the most recent achievements in quantum		
	information and quantum optics (entanglement, quantum cryptography, single photon sources, quantum tomography).		
Content and organisation	 Introduction (history: Planck-Einstein-Bohr-de Broglie-Schroedinger-basic rules of quantum mechanics) Rayleigh-Jeans, Planck, quantization of a one-d harmonic oscillator and application to Maxwell fields; . Application: Fermi golden rule and spontaneous emission. Coherent states Non-locality and entanglement: Bell's inequalities Second quantum revolution, Quantum Information, basic tools, protocols and applications 		
Acquired	The students		
competencies	 get familiar with a quantum description of light get acquainted with the most recent developments of quantum optics and quantum information are able to solve elementary exercises similar to those solved during the course. 		
Performance	Final examination		
Appraisal	Type of Examination: written exam		
Prerequisites	Solid mathematical background, basic knowledge in physics		
Litoratura	Fundamentals in Atomic Physics/Quantum Mechanics		
Literature	Griffith: Introduction to Quantum Mechanics		

UE03 Laser sou	rces and application / matter interaction Semest	re : M2 – S3		
Module	Code :		ECTS : 3	
Person in charge	Nicolas Sanner			
Lecturer (s)	Nicolas Sanner, Frank Wagner, Jean-Yves Natoli, Kostas Iliopoulos, Amélie Ferré,			
Workload	CM : 34 h (with exercises and lab work)			
Objectives	The students from different backgrounds elaborate th	neir knowledg	e on the physical	
-	principles of optoelectronic devices. Applications in sen	-		
	energy harvesting.	0, 0 0		
Content and	The teaching unit is composed of <u>3 completely indep</u>	pendent parts	: Optoelectronics,	
organisation	crystal based components, optical thin film based compo	onents		
	Optoelectronics part			
	I – Introduction			
	- Electronic band theory of semi-conductors			
	- A mono-dimensional toy model: the Kronig-Penr	<i>ney</i> model		
	- Effective mass: origin of holes			
	- Extension in 3D and application to common sem	i-conductors		
	 Optical transitions in direct and indirect bandgap 	o semi-conduc	ctors	
	II – Light emission			
	 Light Emitting Diodes: Principles 			
	- From the Electronic band structure to the space	band diagram	1	
	- Classical homojunction			
	- Heterojunction			
	III – Devices			
	- Structure of a LED			
	- A word about fabrication			
	- Extraction and light management			
	- Efficiencies			
	- Emission spectrum			
	- Applications and comparison with sensing devices			
	<u>Crystal based optical components</u>	on longs form	alism	
	 I – Introduction: EM waves in isotropic media, polarization, Jones formalism II – Anisotropic optics: susceptibility tensor, principal axes, index ellipsoid, optical axes, 			
	classification, normal modes, Fresnel equation, Eigen-polarizations, walk off angle,			
	propagation in biaxial crystal, propagation in uniaxial crystals, application to phase			
	matching in nonlinear optics, birefringence			
	III – Crystal based components: specifying optical components, polarizers (polymer, thin-			
	film, crystal-based), waveplates, EOM, LCD-modulators, AOM, phase-matching in NLO			
	optical thin film based components			
Acquired	The students			
competencies	know how what represents an bandstructure and how it can be obtained			
	 know what is a direct / indirect bandgap materials 			
	• understand the applications of each			
	 know what an LED and a CMOS sensor are and how they are build 			
	 know what the efficiency of a LED and a sensor is 			
	> Know how to determine the refractive index and	the polarizati	on of the linearly	
	polarized eigenmodes propagating in a crystal			
	> Know the different types of polarizers	a alical and the PLA	Record and the later of the later	
	> Know how waveplates, electro-optic modulators (pockels cells), liquid-crystal light			
	modulators, acousto-optic modulators work.			
0				
Performance	Final examination			
Appraisal Brono gruinite c	Type of Examination: written exam			
Prerequisites	Semiconductor class, electromagnetic wave basics, programming basics (matlab or			
l it a water wa	python), D. Diamet Advanced Comission ductor Fundamentals			
Literature	R. Pierret, Advanced Semiconductor Fundamentals			

UE04 Optical co	mponents and optoelectronics	Semestre : M2 – S3	
Module		Code : SPHCUK1	ECTS : 3
Person in charge			
Lecturer (s)	Guillaume Demésy, Frank Wagner, Frédéric Len Lumeau	narquis, Fabien Lemaro	chand, Julien
Workload	CM : 34 h (with exercises and lab work)		
Objectives	The students from different backgrounds elal	borate their knowled	ge on the physical
	principles of optoelectronic devices. Applicatio energy harvesting.	ns in sensing, lightnin	g, nanotechnology,
Content and	The teaching unit is composed of <u>3 complet</u>		s: Optoelectronics,
organisation	crystal based components, thin film optical coat	tings.	
	 Optoelectronics part I – Introduction: Electronic band theory of semodel: the <i>Kronig-Penney</i> model, effective maapplication to common semi-conductors, opbandgap semi-conductors II – Light emission: Light Emitting Diodes: Prince to the space band diagram, classical homojunct III – Devices: structure of a LED, a word management, efficiencies, emission spectrum, a devices Crystal based optical components I – Introduction: EM waves in isotropic media, p II – Anisotropic optics: susceptibility tensor, priclassification, normal modes, Fresnel equatio propagation in biaxial crystal, propagation in matching in nonlinear optics, birefringence III – Crystal based components: specifying optic film, crystal-based), waveplates, EOM, LCD-mode Thin film optical coatings I – Thin film design: description of the multilar filters: dielectric mirrors, antireflection coatings II – Manufacturing and characterization of the experimental demonstration. 	ass: origin of holes, ex- patical transitions in d siples, from the electro- ion, heterojunction about fabrication, ex- applications and comp polarization, Jones form incipal axes, index elli- on, Eigen-polarization in uniaxial crystals, ap al components, polariz- dulators, AOM, phase- tion and interferences ectance and transmit yer structures used fo 5, edge filters, bandpas	Attension in 3D and lirect and indirect onic band structure attraction and light arison with sensing nalism psoid, optical axes, s, walk off angle, plication to phase ters (polymer, thin- matching in NLO inside a multilayer tance factors of a r classical thin film s filters.
Acquired competencies	 The students know how what represents an bandstructure and how it can be obtained know what is a direct / indirect bandgap materials understand the applications of each know what an LED and a CMOS sensor are and how they are build know what the efficiency of a LED and a sensor is Know how to determine the refractive index and the polarization of the linearly polarized eigenmodes propagating in a crystal Know how waveplates, electro-optic modulators (pockels cells), liquid-crystal light modulators, acousto-optic modulators work. know what happens inside a multilayer structure. know how to design a thin film stack to obtain a given reflectance or transmittance spectral profile. 		

	know how thin film filters are manufactured.
Performance	Final examination
Appraisal	Type of Examination: written exam
Prerequisites	Semiconductor class, electromagnetic wave basics, programming basics (matlab or python),
Literature	R. Pierret, Advanced Semiconductor Fundamentals

UE05 Photonics	for biomedical applications	Semestre : M2 – S3	
Module		Code : SPHCUK2 ECTS : 3	
Person in charge	Guillaume Baffou		
Lecturer (s)	Guillaume Baffou, Anabela Da Silva		
Workload	CM : 24 h	Homework & self-studies : 8 h	
Objectives	The students build and consolidate their knowledge on the field of imaging biological systems. A first part of the Module will be dedicated to <i>optical</i> microscopies with a special focus on cells cultured in vitro. This first series of lecture is aimed to span the wide variety of optical microscopy techniques that have been developed until very recently to image living systems, from standard technique to more advanced approaches enabling ultrahigh spatial resolution, high velocity and 3D imaging. A second part of the course is oriented toward imaging of biological tissues, for biomedical applications.		
Content and organisation	 a. The optical Microscope bright/dark field imaging, p b. Fluorescence microscopy fluorophores families, exp microscopy, confocal micro photon fluorescence, u microscopy, TIRF microscopies (microscopy, TIRF microscopies (microscopy, stimulated Rar d. Superresolution techniqu microscopy, STED, SIM, PAI e. Advanced optical microscopies spectroscopy, fluorescence imaging) f. Applications (optogenetics embryogenesis, brain/tissu g. Introduction to the use of of II. Tissue imaging and biomedical a. Introduction to biological ti b. Main contrasts: Absorption c. Model of light propagatio 	 Cell imaging (G. Baffou, 15h) a. The optical Microscope (spatial resolution, Köhler illumination, bright/dark field imaging, phase contrast, DIC, QLSI) b. Fluorescence microscopy (physics/chemistry of fluorescence, fluorophores families, experimental implementation of fluorescence microscopy, confocal microscopy, fluorescence labelling of cells, two-photon fluorescence, upconversion fluorescence, light sheet microscopy, TIRF microscopy, spinning disc fluorescence microscopy) c. Vibrational microscopies (Rayleigh scattering, Raman scattering and microscopy, stimulated Raman microscopy, CARS) d. Superresolution techniques: Above the diffraction limit (4pi-microscopy, STED, SIM, PALM, SOTRM) e. Advanced optical microscopy techniques (Fluorescence correlation spectroscopy, fluorescence life time imaging, FRAP, nanoparticles for imaging) f. Applications (optogenetics, brain/neuron imaging in vivo and in vitro, embryogenesis, brain/tissue clearance) g. Introduction to the use of deep learning for bioimaging analysis Tissue imaging and biomedical applications (A. Da Silva, 10h) a. Introduction to biological tissue optics b. Main contrasts: Absorption, fluorescence, Scattering 	
	•	problems resolution	
Acquired	The students	d. Instrumentation and imaging/diagnostic setups examples	
competencies	 become aware of the importance of the research community working on optical imaging in biology, and of the most active research activities that are animating the fields of bioimaging and biophotonics possess a solid knowledge on all the techniques capable of imaging living matter, from the scale of single cells in culture, to the scale of animals and patients. learn/consolidate fundamental knowledge in physics related to main physical contrasts, to light propagation in biological tissues, to molecular fluorescence, Raman spectroscopy. know basics in biology, such as in cell biology and fluorescence labelling techniques. 		
Performance	Final examination		
Appraisal	Type of Examination: written exam		
Prerequisites	Nothing specific.		
Literature	 G. Cox, Optical Imaging Techniques in Cell Biology B. Valeur, Molecular Fluorescence Principles and Applications M. Born and E. Wolf, Principles of Optics, Cambridge University Press Ed. Tuan Vo-Dinh, Biomedical Photonics Handbook, CRC Press, 2003 V. Tuchin, Tissue optics, Light scattering methods and instruments for medical diagnosis, SPIE Press, 2000 		

UE06 Advanced	Methods for Optical Instrumentation	Semestre : M2 – S3	
Module		Code : SPHCUK8	ECTS : 3
Person in charge	Elodie Choquet		
Lecturer (s)	Elodie Choquet		
Workload	CM:24h / TD:0h / TP:0h	Homework & self-studi	<i>ies :</i> 8 h
Objectives	The students with a basic knowledge of ray opt	-	
	understanding of the optical systems. They know the key characteristics that drive their		
	performance and specifications. The learn to recognise the main aberrations that limit		
	their perfomance, and what the levers are to minimize or cancel them, with a		
	mathematical and analytical method. They learn how to diagnose the performance of an		
	existing optical system, and how to desing new systems given specifications.		
Content and	I. Geometrical Optics (General principles, Gauss approximation, Aperture,		nation, Aperture,
organisation	Field of view, depth of field)		
	II. Chromatic aberrations (Axial a	and Transverse chrom	natic aberration,
	achromatic doublet)		
	III. Geometrical aberrations (3 rd or		
	aberration: Nijboer equations, Sei		• •
	order aberrations of the spherical dioptre and of the thin lens.)		
	IV. Fourier optics and aberrations (Diffraction, point spread function, Strehl ratio, Rayleigh and Marechal criteria, Seidel aberration and wave optics)		
	V. Radiometry (Definition of radio		
	radiation emission, metrology)	inetite quantities, rau	iation spectrum,
Acquired	The students		
competencies	•can compute the aperture and field of view of a given optical system and conversely		
	they can compute the dimensions of an optical system given specifications.		
	•can compute the chromatic aberation of a system and design optical elements that make		
	a system achromatic.		
	•can recognize the main aberrations from their transverse and longitudinal behaviors.		
	•can estimate the size of the transverse abera	ition (spherical, coma, a	astigmatism, field
	curvature, distorsio) of a given optical system		
	•can compute the expression of the transverse aberration of a system knowing its		
	wavefront aberration		until in an autical
	•know about geometric aberrations varies with the position of the pupil in an optical		
	system • can quantify the quality of an optical system wi	th wave optics using Stre	oblicatio Payloigh
	and Marechal criterio	th wave optics using stre	eni ratio, Navieign
	•can quantify the radiometric properties of a sc	ource and of an optical sy	vstem.
Performance	Final examination		/
Appraisal	Type of Examination: written exam		
Prerequisites	Solid mathematical background (Taylor expansi	on, polynomial developn	ments)
	Fundamentals in ray optics (ray tracing, conjuga	tion formulae, definition	n of an optical
	system).		
	Basic knowledge in Fourier optics (diffraction, F	resnel approximation, Fo	ourier
	transforms)		
Literature	E. Hecht: Optics, Addison-Wesley 2 nd ed. 1987		
	M. Born & E. Wolf: Principles of optics, Pergammon Press, 6 th ed. 1980		
	W.T. Welford: Aberrations of optical systems, A	dam Hilger, 1991	

UE02 Advanced	Electromagnetism 2	Semestre : 3	
Module		Code : SPHCUK6 ECTS : 3	
Person in charge	Miguel Alonso – Frédéric Zolla		
Lecturer (s)	Miguel Alonso – Frédéric Zolla		
Workload	CM:24 / TD:/		
Objectives			
Content and	1. Rays ar	nd Waves	
organisation	An overview is given of the many ways to under		
	and wave models, and the corresponding ways to construct models for propagating		
	waves based exclusively on rays. Analogies with other areas of physics are stressed,		
	particularly that with the connection between the classical and quantum models for		
	particles.		
	1.1 Mathematical elements		
	Asymptotic methods: stationary phase and saddle points		
	Fourier uncertainty		
	Phase-space representations: Wigner, I	Husimi/Q/Spectrogram, Kirk-	
	wood/Rihaczek/Dirac		
	<u>1.2 Ray-wave connection in the paraxial limit</u>		
	Review of wave optics in the paraxial re	-	
	 Review of ray optics in the paraxial region 		
	 Collins formula and LCT for connecting rays and waves 		
	Complex ray bundles and Gaussian bea	ims	
	1.3 Ray-wave connection in the short-wave limit		
	Nonparaxial scalar wave optics in terms	s of amplitude and phase: super- and	
		sub-oscillations (Gouy phase)	
	Use of stationary phase and Feynman integral picture.		
	Flux lines and Bohmian paths		
	Debye asymptotic series The many forces of the principle and the line		
	 The many faces of ray optics: Eikonal equation, Fermat's principle and the Ibn Sahl-Decartes-Snell law 		
		on representation: connection with WKB	
	Caustics	on representation. connection with with	
	 Caustics Angular spectrum/Fourier regime 		
	 Ray-based wave estimates in the direction/momentum representation: con- 		
	nection with Debye-Wolf (& Richards-Wolf)		
	 Direction/momentum caustics 		
	 Connections through stationary phase 		
	 Diffraction: Keller's diffracted rays 		
	Uniform asymptotics		
	Gaussian summation methods		
	1.4 Ray-wave connection in the low coherence limit		
	Basic elements of spatial coherence: the cross-spectral density and the Wolf		
	equations		
	Radiative transfer equation: the radian		
	Wave-based definitions of the radiance and conservation along rays		
	 Analogies in other areas of optics and physics. 		
	2. Structured light		
		-	
	This course presents the basic elements of structured light beams, including properties and applications. General aspects of optical fields are also discussed such as		
	polarization, geometric phase, energy flow, and gradient and scattering forces on		
	particles.	and brokent and scattering forces of	
	pur ticles.		

	 2.1 Scalar solutions Types of self-similarity Plane-wave superposition Talbot effect Closed-form solutions of wave equations through separation of variables Propagation-invariant beams: Bessel, Mathieu, others "Accelerating" beams: Airy and its variants "Self-healing", "acceleration" and other apparently strange behavior Structured Gaussian beams: Hermite-Gauss, Laguerre-Gauss, Ince-Gauss, others Ray pictures Applications in imaging, machining, manipulation, and information transfer 2.2 Polarization Review: Jones vectors, Stokes parameters, Poincaré sphere Polarizers, birefringent elements, and geometric phase Vector beams and non-uniform polarization Orbital and Spin angular momentum in the paraxial regimes; interaction with particles. 2.3 Nonparaxial generalizations Modeling strongly focused light: angular spectrum, Debye-Wolf and Richard-Wolf integrals Multipolar expansions Scalar structured nonparaxial fields Montgomery effect Orbital and spin angular momenta in the nonparaxial regime, and spin-orbit coupling
	Nonparaxial descriptions of polarization
	Trapping forces and torques
	Principles of Mie theory: forces and torques.
Acquired	The students
competencies	• know how to
Performance	Final examination
Performance Appraisal	Type of Examination: written exam
Prerequisites	Elecromagnetism
Literature	

UE07 Nanophot	onics Semestre : 3		
Module	Code : SPHCUK9 ECTS : 3		
Person in charge	Guillaume Demésy		
Lecturer (s)	Nicolas Bonod, Guillaume Demésy, Brian Stout		
Workload	CM : 36 / TD : /		
Objectives	The students from different backgrounds elaborate their knowledge on nanophotonic		
	modeling, concepts and devices.		
Content and	I – Finite element modeling for nanophotonics		
organisation	- Electromagnetism prerequisite : Maxwell's equation in matter in harmonic		
-	regime, wave equations in 2D and 3D in electromagnetism		
	- Notion of modes, eigenvalue problems		
	- Total/scattered field formulation of a scattering problem		
	- Open boundary conditions (BC) : Perfectly matched layers and Absorbing BC		
	- Finite element variational formulation		
	 A word about other methods (Plane Wave Expansion, FDTD, etc) 		
	- Hands on 1: a 1D finite element wave problem from scratch in python		
	- Hands on 2: a 2D finite element scattering problem almost from scratch in		
	python		
	II – Plasmonics Part I: SPP		
	 Survey of plasmonics (Wood's anomalies, total absorption, near field observation time dynamics) 		
	 observation, time dynamics) Electromagnetism pre-requisite: Rayleigh coefficients, polarization 		
	- Brewster incidence		
	 Pole and zero of the reflection coefficient 		
	- Conditions on materials to get a pole		
	 Dispersion curves of SPP, asymptotic limits 		
	- Excitation of SPP with prims (Kraetschmann, Otto)		
	- Application of SPP to biosensing		
	- Near field excitation of SPPs (defect, tip, emitters)		
	- Diffraction grating's law		
	 Excitation of SPPs with diffraction gratings 		
	Part II: LSPR		
	- Basics on light scattering		
	- Rayleigh scattering		
	- Metal colloids on solution: history, ultramicroscope, Mie		
	 Mie coefficients, polarizability of sub-wavelength sized particles Data of the metazine bility 		
	- Pole of the polarizability		
	 Plasmons on metallic nanospheres (influence of metals, hybrization) Near, intermediate and far fields scattered by electric dipoles 		
	 Mie resonances on high refractive index particles 		
	III – Quantum Aspects of photonics, Green's function - Mie Theory		
	- Basics of métasurfaces		
	- Basics of Quantum aspects of light		
	- Basics of spontaneous and stimulated emission		
	- Density of States		
	 Introduction to the theory of Green's functions 		
	- Overview of Mie theory		
Acquired	The students		
competencies	know how to formulate a scattering problem using Finite elements		
	know how to apply proper boundary conditions		
	• know how to compute energy-related quantities from the electromagnetic field		
	know how to plot dispersion curves of SPP		
	know how to derive solution of SPPs and LSPRs		

	 know how to plot dispersion curves of SPP 	
	Notion of poles and zeros of optical responses (reflection coefficient, polarizability)	
	 know how to derive solutions of SPPs and LSPRs 	
	 know how to formulate resonant light scattering 	
	 know how to calculate a EM density of states 	
	Understand some basic concepts of the quantum nature of light	
	Know how to calculate a Green's function in free space	
	 Understand the role of the Green's function in photonics. 	
	• Know the definition of cross sections and their relationship with energy conservation	
Performance	Final examination	
Appraisal	Type of Examination: written exam	
Prerequisites	Elecromagnetism	
Literature	Theory and Computation of Electromagnetic Fields, Jian-Ming Jin, Wiley 2010	
	The Finite Element Method: Theory, Implementation, and Applications, Mats G. Larson,	
	Springer 2013	
	S.Enoch, N. Bonod, (Eds.). (2012). Plasmonics: from basics to advanced topics (Vol. 167).	
	Springer.	
	Maier, S. A. (2007). Plasmonics: fundamentals and applications (Vol. 1, p. 245). New	
	York: springer.	
	Novotny, L., & Hecht, B. (2012). Principles of nano-optics. Cambridge university press.	

UE09 Instrumen	tation for Astronomy	Semestre : M2 – S3	
Module		Code : ECTS : 3	
Person in charge	Philippe Amram		
Lecturer (s)	Philippe Amram		
Workload	CM : 34 H		
Objectives			
Content and	Chapter 1. Observing the universe. Links	Chapter 5. Introduction to spectrosco	pes
organisation	with instrumentations	5.1 Introduction to astrophy	/sical
	1.1 Observing the universe at different	instrumentation	
	wavelengths	5.2 Spectroscopy: basic Layouts	
	1.2 Parasitic sources of light emission	5.3 Introduction to spectroscopes	and
	1.3 Other sources of light emission	data cubes	
	1.4 Neutrinos	5.4 Quick spectroscope history	
	1.5 Gravitational waves	5.5 Spectrographs and spectromete	rs
	1.6 Observatories of the 21st century	Chapter 6. Spectrographs	
	Chapter 2. Telescopes	6.1 Introduction	
	2.1 Basics on telescopes	6.2 Elementary ray optics	
	2.2 UVOIR (UV-Optical-IR) telescopes	6.3 Energy flow	
	2.3 High angular resolution	6.4 Study of a spectrograph	
	2.4 Radio telescopes	6.5 Dispersers	
	2.5 Observing from space	6.6 Study of a spectrograph, the case	se of
	2.6 X and γ -rays astronomy	gratings	
	Chapter 3. Light dispersers	6.7 Application: Example of gra	ating
	3.1 Prisms	spectrograph	
	3.2 Gratings and Grisms	6.8 Instrumental design constraints	
	3.3 Fabry-Perot interferometers,	Chapter 7. Spectro-Imagers	
	tunable filters	7.1 Etendue Conservation	c \
	3.4 Michelson interferometers, FFT	7.2 Multi-object spectrographs (MO	5)
	Chapter 4. Detectors	7.3 Spectro-imagers (IFU, IFS)	wa wa la
	4.1 The observer's problem	7.4 Spectro-imagers: spectrog	rapn
	4.2 Flux Measurements and noises	imagers	otor
	4.3 Charge Coupled Devices (CCD) 4.4 Alternative detectors	7.5 Spectro-imagers: spectrom	leter
	4.4 Alternative delectors	imagers	
Acquired	•		
competencies			
Performance	Final examination		
Appraisal	Type of Examination: written exam		
Prerequisites			
Literature			
L	I		

UE Apprenticeship	IE Apprenticeship Semestre : M2– S3		
Module	Code : SPHCUK5 3 ECTS		
Person in charge	A. Litman / F. Wagner		
Lecturer (s)			
Workload	CM: TD: TP:		
Objectives	To provide the student with experience of working as part of a research team and the opportunity to demonstrate and apply the knowledge in optics and photonics acquired during classes		
Content and organisation	During the whole semester the students will spend one to two weeks/month (6 to 7 weeks in total) in a research laboratory or in a company. They work with researchers/postdocs, PhD students and others. This apprenticeship training is a real immersion in the working life of a French company or in a laboratory of Aix-Marseille Université. The students work on different theoretical and/or experimental projects and participate to the activities (meetings, presentations, scientific discussion) carried out in the institutions where they do their apprenticeship.		
Acquired competencies	The students - understand the connections between theoretical results, simulations, experimental studies and practical solutions in optics and photonics - understand work procedures and methodology in a research institution or a company - are able to systematically approach a practical problem. - gather experience in interdisciplinary team work and are able to express their knowledge in such an environment. - are able to scientifically report and present their work		
Performance Appraisal	The evaluation is made by the Apprenticeship assiduity, seriousness, assiduity, results	supervisor on the basis	of the students
Prerequisites	Strong background in optics and photonics		
Literature	Literature is provided by the supervisors of the apprenticeship projects beforehand		

UE12 Français L	₋angue Etrangère – French as a Foreig	gn Semestre : M2 – S3	
Language			
Module		Code : SPHCUO6J ECTS : 2	
Person in charge	Cécile THIRION		
Lecturer (s)			
Workload	TD : 24h	Homework & self-studies : 24-48 h	
Objectives	an understanding of French society ar	y in communication in the French language and nd culture so that they may express themselves, ehension when communicating with French	
Content and organisation	comprehension, oral and wr placed on oral competency, th strategic proficiencies accord	I. Four areas of language competency will be covered – oral and written comprehension, oral and written communication – but emphasis will be placed on oral competency, therein integrating pragmatic, socio-cultural and strategic proficiencies according to the Common European Framework of Reference for Languages (CEFR).	
	the approach will be centered there will be flexibility in the The course program will there	The lesson plans for this class will be communicative and action-oriented. As the approach will be centered on students engaging in communicative tasks, there will be flexibility in the choice and duration of the class activities. The course program will therefore be adapted to best fit the linguistic needs of each level. The topics covered may vary depending on local, national or interactioned program of the time of user.	
	The course is not a lecture participation. Class attendan absence, the student is invite homework given during the be available on a digital work III. Resources and training mate songs, videos, playful materi	e and its success depends greatly on student nee is strongly recommended. In the case of an ted to make up the work done in class and any student's absence. Documents from class will	
Acquired competencies	Varies according to the level of each group	р.	
Performance Appraisal	Continuous assessment: oral comprehension, written comprehension, exercises relating to grammar and vocabulary lessons, oral presentation.		
Prerequisites	Adapted according to the level of each group.		
Literature	La Grammaire des premiers temps (PUG) Grammaire Progressive du Français (Clé International)		